		STUDY MODULE D	ESCRIPTION F	ORM		
	f the module/subject tromagnetic Fiel	d Theory		Code 1010324331010323393		
Field of	^{study} trical Engineerin	a	Profile of study (general academic general aca		Year /Semester	
	path/specialty	-	Subject offered in Polis	:	2/3 Course (compulsory, elective) obligatory	
Cycle o	f study:	-	Form of study (full-time		obligatory	
	First-cyc	cle studies	part-time			
No. of h	ours		L		No. of credits	
Lectur	re: 20 Classes	s: 10 Laboratory: 10	Project/semina	rs: -	6	
Status o	-	program (Basic, major, other)	(university-wide, from		,	
		other		univers	ity-wide	
Education areas and fields of science and art					ECTS distribution (number and %)	
techr	nical sciences				100 6%	
	Technical scie	ences			100 6%	
dr ir ema tel. Fac ul. F		put.poznan.pl neering	-		ng.	
1	Knowledge Skills	Differential and integral calculus	, vector analysis, fund	damentals of	electromagnetism, basic	
2		electrical circuit theory.				
3	Social competencies	The students is aware of the new collaboration within the group.	ed to expand their kno	owledge and	to understand the need for	
Assu	mptions and obj	ectives of the course:				
	standing the physical oculating fields.	quantities and laws of the electrom	agnetic field in forms	integral. Kno	owledge of analytical methods	
	Study outco	mes and reference to the	educational res	ults for a	field of study	
Knov	vledge:					
		te the basic laws of electromagnet operties for various types of electro				
	•	the status of the long line, its prop	erties, parameters an	d calculate t	he level of voltages and	
Skills	· •	gnal propagation [K_W04++]				
1. Can	use Maxwell - [K_U0	5++, K_U10+]				
	interpret the states of signal propagation	the long line, its properties, parar [K_U02++, K_U10++]	neters, calculate the v	alues of volt	ages and currents depending	
Socia	al competencies:					
	ty to work in a team, v tence [K_K02+, K_k	villingness to comply with the princ (03++]	ciples of teamwork, at	tention to im	proving their own	
Assessment methods of study outcomes						

Lecture:

- assess the knowledge and skills listed on the written exam of a problematic.

Exercises auditorium:

- tests and tests in writing (colloquia: 7, 14 week semester),
- keep rewarding activity and creativity in solving the set tasks.

Laboratory:

- test and favoring knowledge necessary for the accomplishment of problems in the area of laboratory tasks,
- continuous evaluation for each course rewarding gain skills they met the principles and methods

- assessment of knowledge and skills related to the implementation of the tasks your practice, the assessment report performed exercise

- rewarding ability to work in a team practice performing the task detailed in the laboratory,

- developed aesthetic rewarding diligence reports and tasks within their own learning.

Course description

The theory of long lines. Electromagnetic field (physical definition). Loretnz force. The electrostatic field. Current flow field. The magnetostatic field. Energy and power in the system of charged bodies. Energy and power circuits in the system. The electromagnetic field varying in time. Quasi-stationary condition. The law of electromagnetic induction. Maxwell's equations. Electrodynamic potentials. Electromagnetic waves. Harmonic field in the electrical conductive, lossy and perfect dielectric. Energy flux, Poynting vector. Radiation. Hertz dipole.

Applied methods of education:

The lecture with multimedia presentation, including drawings, photographs, animations, films, supplemented with examples given on the whiteboard, taking into account various aspects of the presented issues, including: economic, ecological, legal, social and practical examples known to students in everyday life, presentation of material in association with other objects. Exercises - solving sample tasks on the board, initiating discussion about solutions,

Laboratory - instructors detailed review of the reports and discussions about comments, demonstrations, work in teams.

Basic bibliography:

1. Krakowski M.: Elektrotechnika teoretyczna. Tom 1, PWN, Warszawa 1995.

2. Krakowski M.: Elektrotechnika teoretyczna. Tom 2, PWN, Warszawa 1995.

3. Kozłowski J., Machczyński W.: Podstawy elektromagnetyzmu, Wydawnictwo Politechniki Poznańskiej, Poznań 1996.

4. Kozłowski J., Machczyński W.: Zadania z podstaw elektromagnetyzmu, Wydawnictwo Politechniki Poznańskiej, Poznań 1997.

5. Chmielewski A., Poltz J.: Zbiór zadań z teorii pola elektromagnetycznego, Wydawnictwo Politechniki Poznańskiej, Poznań 1992.

6. Frąckowiak J., Nawrowski R., Zielińska M.: Podstawy elektrotechniki. Laboratorium, Wydawnictwo Politechniki Poznańskiej, Poznań 2011.

Additional bibliography:

1. Guru B. S., Hiziroglu H. R.: Electromagnetic field theory fundamentals, PWS Publishing Company, Boston 1998.

2. Bolkowski S.: Teoria obwodów elektrycznych, WNT, Warszawa 1998.

3. Czarnywojtek P., Kozłowski J., Machczyński W.: Elektromagnetyzm, Wydawnictwo PWSZ Kalisz, Kalisz 2011.

4. Czarnywojtek P., Kozłowski J., Machczyński W.: Zbiór zadań z elektromagnetyzmu, Wydawnictwo PWSZ Kalisz, Kalisz 2009.

Result of average student's workload

Activity	Time (working hours)
1. participation in class lectures	20
2. participated in exercises auditorium	10
3. participation in laboratory classes	10
preparation and development of laboratory reports	22
5. participate in the consultations on the lecture and exercise	14
6. exam preparation	34
7. participation in the exam	4
8. preparation for colloquia	30
9. participate in the consultations on the lab	7

Source of workload	hours	ECTS
Total workload	151	6
Contact hours	65	2
Practical activities	39	2